Avalanche PhotoDiodes
for CMS electromagnetic calorimeter

Egidio Longo
INFN and University of Rome “La Sapienza”

(on behalf of the CMS Collaboration)
To detect the Higgs boson in the mass range 90-130 GeV, CMS Collaboration will build a homogeneous electromagnetic calorimeter

80,000 PWO scintillating crystals
Lead tungstate
is a fast and compact
scintillating crystal
limited by a low light yield
(~ 100 photons/MeV in 23 cm crystals)

Photon detectors for PbWO₄ in CMS

- not sensitive to 4 Tesla magnetic field
- high ε_0 for $\lambda \sim 400 \div 500$ nm
- internal amplification
- fast and good for high rate
 (1 bunch crossing every 25 ns)
- radiation hard
- not (too much) sensitive to charged particles
AVALANCHE PHOTODIODES

- fast
- not affected by magnetic field
- high quantum efficiency
- internal amplification (50 ÷ 100)
- small area

Strong R&D activity to develop APD
in collaboration with
EG&G and Hamamatsu
APD Working Principle

REVERSE STRUCTURE
⇒ Improve Quantum efficiency at short λ
reduce nuclear counter effect
NUCLEAR COUNTER EFFECT

Charged particles crossing a silicon layer generate:

\[\frac{dn}{dx} = \frac{dE}{dx} \times \rho \times \frac{1}{E_{e/h}} \approx 100 \text{ e/h pairs/\mu m} \]

In a reverse structure APD only electrons
produced in p+ layer (few \(\mu\)m)
are fully amplified by gain M

\[\Rightarrow \text{Effective thickness } d_{\text{eff}} \]

comparing radioactive source peak \((^{90}\text{Sr})\)
measured in PIN and APD

\[d_{\text{eff}} = \frac{d_{\text{PIN}}}{\text{peak(PIN)}} \cdot \text{peak(APD)} \]

\[\Rightarrow \left(\frac{\text{MIP}}{\text{light}} \right)_{\text{APD}} = \frac{d_{\text{eff}}}{d_{\text{PIN}}} \left(\frac{\text{MIP}}{\text{light}} \right)_{\text{PIN}} = \]

\(d_{\text{eff}} \approx 5\mu\text{m}, \ d_{\text{PIN}} = 200 \mu\text{m}\)

\[= \frac{1}{40} \left(\frac{\text{MIP}}{\text{light}} \right)_{\text{PIN}} \]
Noise in homogeneous electromagnetic calorimeter

\[\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E} \]

\[\frac{a}{\sqrt{E}} \Rightarrow \text{intrinsic term } \oplus \text{ photo-statistics} \]
\[b \Rightarrow \text{calibration } \oplus \text{ stability} \]
\[\frac{c}{E} \Rightarrow \text{electronic noise} \]

CMS design goal:
\[a \sim 3\%, \ b \sim 0.5\%, \ c \sim 200 \text{ MeV} \]

The APD contributes to all the terms
Statistical fluctuations increased by avalanche multiplication: Excess noise factor

\[\frac{\sigma(\text{MeV})}{E} = \sqrt{\frac{F}{N_{pe}E}} \rightarrow a \]

Stability

\[\frac{\partial M}{\partial V} \quad \text{and} \quad \frac{\partial M}{\partial T} \rightarrow b \]

APD capacitance, resistance and preamplifier noise: Series Noise

\[\frac{\sigma(\text{MeV})}{E} \propto \frac{(C_D+C_{PA})}{\sqrt{\frac{R_s}{M}}} \sqrt{\frac{C_D^2}{g_m} + 0.7} \frac{1}{\sqrt{\tau N_{pe} ME}} \rightarrow c \]

APD leakage current: Parallel Noise:

\[\frac{\sigma(\text{MeV})}{E} \propto \frac{1}{\sqrt{\frac{1}{N_{pe} ME}}} \sqrt{(I_s+FM^2I_B)} \sqrt{\tau} \rightarrow c \]
During R&D special prototypes were developed by Hamamatsu and EG&G and tested by the collaboration.

GOALS:

- low capacity
- small Dark Current
- improve stability in gain and temperature
- increase the sensitive area
- match scintillation spectrum and quantum efficiency
- reduce excess noise factor F
- improve radiation hardness
New prototypes \((M = 50)\) \(T \simeq 20^\circ C\)

<table>
<thead>
<tr>
<th>APD</th>
<th>C(pF)</th>
<th>(V_b)(V)</th>
<th>(I_D)(nA)</th>
<th>F</th>
<th>(\varepsilon_Q) (450 nm)</th>
<th>N.C.E. (d_{eff}) ((\mu m))</th>
<th>(1\ \frac{dM}{M\ dV}) (%/V)</th>
<th>V spread</th>
<th>(1\ \frac{dM}{M\ dT}) (%/°C)</th>
<th>Area (cm(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ham.</td>
<td>110</td>
<td>400÷420</td>
<td>2-3</td>
<td>2</td>
<td>85%</td>
<td>5</td>
<td>5</td>
<td>5%</td>
<td>-2.0</td>
<td>0.25 (\rightarrow) 2(\times)0.25</td>
</tr>
<tr>
<td>EG&G</td>
<td>25</td>
<td>350÷450</td>
<td>30-50</td>
<td>2.3</td>
<td>75%</td>
<td>10</td>
<td>0.6</td>
<td>25%</td>
<td>-2.7</td>
<td>0.25 (\rightarrow) 2(\times)0.25 or 0.5</td>
</tr>
<tr>
<td>ideal CMS request</td>
<td>< 100</td>
<td>< 500</td>
<td>~ 10 nA</td>
<td>2</td>
<td>big</td>
<td>small</td>
<td>< 2</td>
<td>< 5%</td>
<td>> -2</td>
<td>> 0.5</td>
</tr>
</tbody>
</table>
\[a = \sqrt{\frac{F}{N_{pe}}} = \sqrt{\frac{2}{5000}} = 2\% \]

b < 0.5% require Voltage regulation better than 100 mV

c \sim 30 \text{ MeV (measured with prototype electronics)}

not irradiated APD contribution negligible but

\(I_d \) increases with radiation damage
RADIATION DAMAGE
occurs through two mechanisms:

- The surface damage causes defects in the front layers.
 - increase surface current
 - could reduce quantum efficiency

- The bulk damage is due to displacement of atoms from their lattice sites.
 - increase bulk current
 - could change the gain

To preserve Quantum Efficiency

⇒ passivation layer from SiO₂ to Si₃N₄ (γ damage)

(plot)

No (or little) change in gain observed

(plot)
Gain before and after irradiation

with $2.7 \cdot 10^{12}$ protons/cm2
At high gain, the main effect is the increase of the bulk current due to neutrons damage.

\[I_B(\alpha A) \]

\[1 \leq 10 \leq 10^2 \]

\[10^2 \leq 10^3 \leq 10^4 \]

\[10^2 \leq \Phi(10^{11} n/cm^2) \]

The increase in I_B is linear:

\[I_B = I_B^0 + \alpha \cdot V \cdot \Phi \]

$\alpha = (10 \pm 1) \cdot 10^{-17}$ A/cm per neutron after 2 days from irradiation

$V \approx d_{eff} \times \text{Area} = 9 \cdot 10^{-5}$ cm2
Behaviour of the **DARK CURRENT**

after irradiation

The dark current depends on temperature

\[I_d = T^2 \ e^{-E_t/KT} \]

in a model with a single trap with energy \(E_t \)

The dark current recovers with time

\[I_{d}^{\text{irr}} (t) = I_{d}^{\text{irr}} (0) \sum_i g_i \ e^{-t/\tau_i} \]

where \(g_i \) is the weight of different levels

induced by neutrons in the semiconductor

The recovery depends on temperature

Each \(\tau_i \) depends on the ratio \(E_i/KT \)
Recovery of the dark current at 20°C

Fit by 3 exponentials + constant

- $\tau_1 = 1.3$ days \hspace{1cm} weight $\sim 35\%$
- $\tau_2 = 7$ days \hspace{1cm} weight $\sim 25\%$
- $\tau_3 = 70$ days \hspace{1cm} weight $\sim 17\%$
- constant term \hspace{1cm} weight $\sim 23\%$
Recovery of the dark current at 0°C

Recovery of the dark current at higher temperatures
Noise Model for LHC

Assuming a schedule with 180 days of run per year divided in three periods of 60 days each and separated by 10 days of pause.

First 3 years at low luminosity

2 hypothesis:

(a) run at 18°C

(b) run at 12°C stand by at 40°C during shut-down
Summary:

Intense R&D activity lead to prototypes very close to CMS ECAL specifications.

Next step: large sample production to test stability and reproducibility.

Second half 1998: start of pre-production.