Test on 2,000 Photomultipliers for the CDF Endplug Calorimeter Upgrade

Irene Fiori

(INFN and University of Bologna)

for

L.Breccia, M.Deninno, G.Farinelli, I.Fiori, G.M.Piacentino, S. Zucchelli

(INFN and University of Bologna)

S.W.Delchamps, J.Freeman, W.Koska, W.Kinney, P.J.Limon, M.Mishina, J.Strait

(Fermi National Accelerator Laboratory)

M.Gallinaro

(INFN and University of Padova)

G.Pauletta

(INFN and University of Udine)

Q.Shen

(Purdue University)

and

the CDF Endplug Upgrade Group
OUTLINE

- PHYSICS REQUIREMENTS
- TEST PROCEDURE
- TEST SETUP
- RESULTS
- CONCLUSIONS
Physics Requirements

- $E_{cm} = 2 \text{ TeV}$
- $\mathcal{L} = 2 \times 10^{32} \text{ s}^{-1} \text{cm}^{-2}$
- Integrated (\mathcal{L}) = 2 fb^{-1}

1. Maximum Energy deposited into a single tower:

<table>
<thead>
<tr>
<th></th>
<th>Max Energy per tower (GeV)</th>
<th>Peak Current (mA)</th>
<th>Nom. Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>770</td>
<td>55</td>
<td>25K</td>
</tr>
<tr>
<td>HAD</td>
<td>600</td>
<td>35</td>
<td>250K</td>
</tr>
</tbody>
</table>

2. **Maximum** Energy flow per tower (~DC background): $\sim 1 \mu\text{A}$

3. **Maximum** Total integrated energy deposit per tower: $10\mu\text{C}$
Phototube Specifications

- Good Quantum Efficiency at $4.80 \text{nm} (>12\%)$ \(\text{(Y11)} \)
- Photocathode Uniformity $>80\%$
- Gain range: 10^4 to 10^6
- spread of Voltages ($G = 10^6$) $< 20\%$
- Linear Response up to 70 mA Peak Current at $G = 500K$
- low Dark Current ($< 5 \text{nA at } G = 500K$)
- Drift of response with time $< 6\%$ in 48 hr
- Shift of response with $\Delta I_{BG} = 1\mu\text{A}$ less than 5\%
- low Temperature dependence
- low Spontaneous Pulse Rate
- Small size
HAMAMATSU mod. R4125

- 10 stages
- green - extended Bialkali photocathode
- 19 mm outer diameter
- 15 mm diameter photocathode
- Base by Thorn EMI
Data from HAMAMATSU

- Voltage for a $G = 500K$
- Dark Current at $G = 500K$
- Cathode Blue (Lum.) Sensitivity

Test Procedure:

"Initial Test" (at FNAL)

- "Conditioning" (2\μA for 48hr at $G=500K$)
- Gain - Voltage curve
- Dark Current

"Full Test" (FNAL or Bologna)

- Gain - Voltage curve
- Dark Current
- Linearity (at 4 Gains)
- Stability in Time
- Stability with BackGround Current
- Relative Q. E. (10% of tubes)
Gain vs. Voltage Test

\[\log(G) = K + P \log(V) \]

\[\chi^2 / \text{ndf} = 18.07 / 13 \]

\[P = -15.86 \pm 0.1204 \]

\[\Phi_2 = 6.921 \pm 0.3915 \times 10^{-1} \]

S.N. = CX3001
Gain - Voltage: Quality of Production

G = 25K (EM)
Voltage for G = 25K (Volts)

G = 250K (HAD)
Voltage for G = 250K (Volts)

No. pmt

11.0 %

11.5 %

For G = 500K (Volts)

Serial. Number

14 MONTHS

Feb. '94

Apr. '95
Dark Current: Quality of Production

HAMAMATSU

OUR Final meas.
Linearity Test

Reject Band $\sigma = 100$

slope = 0.724022
intercept = -12.7426

% Deviation

-2% dev.
Linearity Test Results

<table>
<thead>
<tr>
<th>Gain</th>
<th>Peak Current measured range</th>
<th>Specified Lower Limit</th>
<th>Peak Current Mean Value *</th>
<th>No. of Rejected pmts</th>
<th>% Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 K</td>
<td>up to 40 mA</td>
<td>10 mA</td>
<td>16.5 mA</td>
<td>3</td>
<td>0.1 %</td>
</tr>
<tr>
<td>50 K</td>
<td>up to 90 mA</td>
<td>20 mA</td>
<td>44.0 mA</td>
<td>2</td>
<td>0.1 %</td>
</tr>
<tr>
<td>100 K</td>
<td>up to 100 mA</td>
<td>35 mA</td>
<td>74.3 mA</td>
<td>3</td>
<td>0.1 %</td>
</tr>
<tr>
<td>500 K</td>
<td>up to 160 mA</td>
<td>70 mA</td>
<td>93.5 mA</td>
<td>35</td>
<td>1.7 %</td>
</tr>
</tbody>
</table>

* for pmts that show > 2% deviation (about 50% of total)
ENDPLUG E.M.
PMT ALLOCATION

Maximum Reacheable
within 2% from Linearity

E_{max}, P_t

$E_{\text{max}} = \frac{\text{Peak Current (}\mu\text{A)}}{44 \ \mu\text{A on 50 } \Omega / \text{GeV}}$

$P_T_{\text{max}} = E_{\text{max}} \cdot \sin \theta$

η
Stability in Time

AVG $B_G(nA) = 660.12$
RMS $B_G(nA) = 4.76$

Channel No. = 10
Base No. = 15262

% Max Deviation in 48 hr within 90 hr measurement

- Mean = 2.238
- 6% limit
- 1602
- 43 pmts
- 2.7% failures
Stability vs. B.G. current change

S.N. = 3269
- $I_{BG} = 0.0 \ \text{nA}$
- $I_{BG} = 1 \ \mu\text{A}$

S.N. = 696
- $I_{BG} = 0.1 \pm 0.01 \ \text{nA}$
- $I_{BG} = 248.4 \pm 42.59 \ \text{nA}$
- $I_{BG} = 1040.9 \pm 178.44 \ \text{nA}$
Stability with B.G.: Quality of Production

54 %
mean = -1.3 %

46 %
mean = 1.9 %

ABS (% Shift)

2028 pmt
5 % limit
2.3 % failures

48 pmt
Relative Q.E.

\[P(n) = e^{\mu} \cdot \frac{\mu^n}{n!} \]

\[\mu = N pe \]

\[\mu = \ln P(0) \]

\[P(0) = e^{\mu} \]
Relative Q.E. : Quality of Production

23% spread

No. pmt

1.5 2 2.5 3 3.5
(arbitrary units)

C. Lum S. and (C. BLUE S. x 11.34) (μA/lum)

Cathode Lum. Sens. (μA/lum)

Serial Number.
Summary Table

<table>
<thead>
<tr>
<th>TEST</th>
<th>Selection Criteria</th>
<th>Specified Limit</th>
<th>Mean Value</th>
<th>No. of Rejected</th>
<th>% of Rejected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain Voltage</td>
<td>V. spread at $G = 500$ K</td>
<td>$< 20%$</td>
<td>$\sim 11 %$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark Current</td>
<td>D.C. at $G = 500$ K</td>
<td>< 5 nA</td>
<td>0.43 nA</td>
<td>10</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Linearity at $G = 10$ K</td>
<td>Peak Anode Current that gives a 2% dev</td>
<td>> 10 mA</td>
<td>16.5 mA</td>
<td>3</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Linearity at $G = 50$ K</td>
<td></td>
<td>> 20 mA</td>
<td>44.0 mA</td>
<td>2</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Linearity at $G = 100$ K</td>
<td></td>
<td>> 35 mA</td>
<td>74.3 mA</td>
<td>3</td>
<td>0.1 %</td>
</tr>
<tr>
<td>Linearity at $G = 500$ K</td>
<td></td>
<td>> 70 mA</td>
<td>93.5 mA</td>
<td>35</td>
<td>1.7 %</td>
</tr>
<tr>
<td>Stability with Time</td>
<td>% Deviation in 48 hours</td>
<td>$< 6 %$</td>
<td>2.2 %</td>
<td>55</td>
<td>2.7 %</td>
</tr>
<tr>
<td>Stability with bkgr. Current</td>
<td>% Shift for $\Delta I_{BG} = 1 \mu A$</td>
<td>$< 5 %$</td>
<td>1.7 %</td>
<td>48</td>
<td>2.3 %</td>
</tr>
</tbody>
</table>

Total of Rejected $= 156$ / out of 2085 $= 7.5 \%$
Conclusions

- We have made extensive measurements on 2085 (Hamamatsu R4125) phototubes for the CDF Endplug Calorimeter: 960 (EM), 846 (HAD)
- We have measured the following properties:
 - Gain vs Voltage
 - Dark Current
 - Linearity
 - Stability vs Time
 - Stability vs background Current
- Some of the properties were measured twice for each phototube
- Measurements taken at three test sites (Hamamatsu, Bologna, Fermilab) are well correlated
- The phototubes show little variation in major properties with manufacturing date
- The Dark Current tends to decrease over time
- 7.5% (156) of the phototubes failed at least one of our selection criteria
- The phototubes that pass all tests have properties that typically are well within our specified limits