Signal Stability of the DELPHI/STIC

(Calorimeter)

Bernardo Tome' / Americo Nacu

(LIP and FCUL - Lisbon)

Tucson, 1997
Outline:

- Detector Description
- Interpretation - preliminary
- Summary
DELPHI STIC Collaboration

University of Bergen, Norway
INFN and University of Bologna, Italy
CERN, European Organization for Nuclear Research, Geneva, Switzerland
INFN and University of Genova, Italy
LIP and IST-FCUL Coimbra and Lisbon, Portugal
Department of Physics, University of Lund, Sweden
INFN and University of Milano, Italy
Physics Department, University of Oslo, Norway
INFN and University of Padova, Italy
Institute for High Energy Physics of Protvino, Russian Federation
INFN and University of Torino, Italy
INFN and University of Trieste, Italy
INTRODUCTION

STIC - SMALL ANGLE TILE CALORIMETER
was installed at DELPHI (LEP) in 1994 to measure the absolute luminosity with an error <0.1%

- This goal was achieved by an accurate detector assembly and control of all systematic errors.

- A regular calibration of the STIC response is performed to precisely define the energy scale.

- If no recalibration is applied the signal shows a systematic decrease in function of time.

A detailed investigation on the origin of this effect is presented and results are discussed in terms of the performance of this scintillator - WLS fiber detector.

- A detailed investigation but not complete
Detector Description

- STIC consists of 2 cylindrical lead/scint. shashlik type calorimeters placed at 2.2 m on each side of the interaction point.
 - Each calorimeter is made of 47 sampling layers - total depth ~27X0 -
 - 1 layer:
 - * 3.4 mm thick continuous absorber (3mm thick lead plate enforced by 100um steel foils)
 - * 3 mm thick scintillating tiles

- STIC internal geometry controlled to better than 50um.

- Scintillation light collected by WLS fibers ~50cm long, readout by Hamamatsu phototetrodes (5~16 inside 1.2T magnetic field)
 - Y T (non S) WLS fiber till 96
 - Y11 (300)H5 with 200 ppm AlN site 97

DELPHI

DELPHI STIC

Z = ±220 cm
29 mrad < θ < 188 mrad

STIC - SMALL ANGLE TILE CALORIMETER
Energy Response Uniformity

- R from Si juststrip telescope (SR = 50 mm)
- Continuous converter no tower structure
- Non-uniformity \Rightarrow enhanced light collection Eff near fibers

E vs R, ϕ (2nd ring)

- R, ϕ measured by STIC
- Energy correcting map $E = E_{\text{meas.}} \cdot \frac{E_{\text{beam}}}{f(R, \phi)}$

Fibers modulation in LEP (1994)
Uniformity and Energy Resolution

- STIC signal increases near fibers
- Non-uniformity is partially corrected by mapping average signal modulation
- 1994: $\frac{S}{E}$ for 45 GeV electrons (Bhabha scattering)
 - Improves from 3.1% before correction to 2.7% after energy map correction
- Before correction $\frac{S}{E}$ worse, (in outer rings)
Energy calibration

Non radiative Bhabha events selected for STIC calibration

For each channel, j, a calibration coefficient, c_j, is found by minimizing:

$$\sum_{i=1}^{N_{\text{ev}}} \left(E_{\text{meas}}^i - E_{\text{beam}}^i \right)^2$$

$$E_{\text{meas}}^i = \sum_{j=1}^{N_{\text{chan}}} c_j \times \text{ADC}_j$$

STIC channels are recalibrated once every month

Without recalibration (i.e. by "freezing" the calibration coefficients) STIC energy response to Bhabha events shows a systematic decrease in function of time.
STIC Response to Bhabha Electrons

Variation with time, with constant calibration coefficients

<table>
<thead>
<tr>
<th>Measured Energy/Beam Energy</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.98</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.96</td>
</tr>
<tr>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td>0.94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.90</td>
</tr>
<tr>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td>0.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.86</td>
</tr>
<tr>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.84</td>
</tr>
<tr>
<td>0.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
</tr>
<tr>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.80</td>
</tr>
<tr>
<td>0.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
</tr>
<tr>
<td>0.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.76</td>
</tr>
<tr>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
</tr>
<tr>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66</td>
</tr>
<tr>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.64</td>
</tr>
<tr>
<td>0.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>0.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.54</td>
</tr>
<tr>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52</td>
</tr>
<tr>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>0.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.46</td>
</tr>
<tr>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.44</td>
</tr>
<tr>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
</tr>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.32</td>
</tr>
<tr>
<td>0.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>0.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
</tr>
<tr>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

$\sqrt{s} = 91 \text{ GeV}$

$\tau = 26\text{ years}$

$\sqrt{s} = 161.6 \text{ GeV}$

$\sqrt{s} = 173 \text{ GeV}$

$\tau = 22\text{ years}$

$\sqrt{s} = 182 \text{ GeV}$

$\tau = 16\text{ years}$

1994+1995: Calibration coeff. fixed at values found in beginning 94

1996: Calib. coeff fixed at values found in beginning 96

1997: Calib. coeff.
Without recalibration the STIC signal shows a systematic decrease in function of time.

\[t = \frac{\Delta t}{\Delta E/E} \ \text{(days)} \ \text{and} \ \gamma = \frac{\Delta \gamma}{\gamma} \ \text{(years)} \]

<table>
<thead>
<tr>
<th>Year</th>
<th>Δt (days)</th>
<th>$\Delta E/E$</th>
<th>γ (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>170</td>
<td>2%</td>
<td>26 y</td>
</tr>
<tr>
<td>1995</td>
<td>150</td>
<td>2%</td>
<td>22 y</td>
</tr>
<tr>
<td>1996</td>
<td>140</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1997</td>
<td>60</td>
<td>1%</td>
<td>16 y (*)</td>
</tr>
</tbody>
</table>

(*) γ_{17} is compatible with signal decrease during first 60 days of 1994.

- Exponential fit to last 4 months of 1994 yields $\gamma \approx 45$ years.
- For $\gamma=45$ years a variation of $\sim 2\%$ in 1 year is expected.
Possible sources of signal variation

\[\text{Radiation Damage} \]

- Bhabha scattering electrons
 - Rate \(\approx 1 \) Hz
 - Stronger effect at small radii
 \[\frac{d\sigma}{d\Omega} \propto \frac{1}{\theta^2} \]
 - Cylindrical symmetry
 no dependence with STIC sector

- Off momentum electrons
 - Rate \(\approx 20-200 \) Hz
 - Concentrated at small radius
 - Strong correlation with STIC sector:

\begin{align*}
\text{1994 and 1995} & : \text{STIC sectors: 1+16 8+9} \\
\text{1996 and 1997} & : \text{STIC sectors: 1+16 8+9 3+4+5+6 11+12+13+14}
\end{align*}
AGEING

- Possible variation with radius = stress
 - Fibres are more bent in outer rings
- No dependence with STIC sector

- Each envisaged source of damage gives a "well" identifiable signature in terms of signal variation vs. sector and ring.
- Such correlation will be investigated in order to establish the origin of signal variation
Dose in shower maximum scintillator

Bhabha scattering

\[D(\text{rad}) = \frac{1800}{R^4 \sqrt{S}} \times \int \frac{dL}{dt} \]

\[\text{cm} \quad \text{GeV} \quad \text{fb}^{-1} \]
DOSE FROM OFF-MOMENTUM ELECTRONS
(in shower maximum scintillator plane)

1994

\begin{itemize}
\item \(<E> \sim 20\ \text{GeV} \ (at\ \sqrt{s} = 90\ \text{GeV})\)
\item Dose is essentially deposited in Rings 1 and 2 and stic sectors close to LEP plane (horizontal)
\item In ring 1, asymmetry between Arm A and C
\end{itemize}
Dose from off-momentum electrons

1997

\[\langle E \rangle_{\text{off-mom}} \sim 40 \text{ GeV} \quad (\text{at } \sqrt{s} = 180 \text{ GeV}) \]

- Off-momentum hitting also stic sectors in vertical plane: 3, 4, 5, 6 / 11, 12, 13, 14
- Since 1996 no tungsten mask on side C
Dose levels in STIC

--- Summary ---

Maximum doses corresponding to 6 months of operation

- Bhabha scattered: $D < 1\text{rad}$ electrons
- Off-momentum: $D < 500\text{rad}$ electrons

Estimated doses in STIC scintillator and WLS fibres are (in principle) small to explain observed signal variation along the time.
Signal Variation in One Year

Measured for Bhabha Events hitting a given ring and sector

1994

- **Arm A**
- **Arm C**

- Variation measured during STIC operation extrapolated to 1 year assuming linear dependence with time.

- No correlation is observed between signal decrease and sectors or rings with maximum dose.
Signal variation in one year measured for Bhabha electrons hitting a given ring (any sector).

- Variation in one year, assuming linear dependence with time.
- Poor statistics in outer rings: $\frac{1}{\theta}$ dependence of Bhabha scattering cross-section.
- No correlation is observed between signal variation and ring, indicating an effect due to fiber stress.

(Additional notes on poor statistics could be included.)
Summary

- Signal decreasing characterized by a time constant $[\tau_1]$, such that:
 - $\tau_1 \approx 15$ years during initial 2 months
 - $\tau_1 \approx 45$ years in remaining period of operation (4 months)
- We don't observe a clear correlation between this effect and radiation damage or fiber stressing.
- Assuming that no uncontrolled changes occurred between 1994 and 1995, no ageing was observed when the detector was not operating.
- STIC signal performance during 1996 presents a puzzling discrepancy (no variation!)
- Even in a pessimistic scenario (by 20 years), STIC energy resolution will not degrade until year 2000.
- Systematic survey of the STIC signal stability will continue.